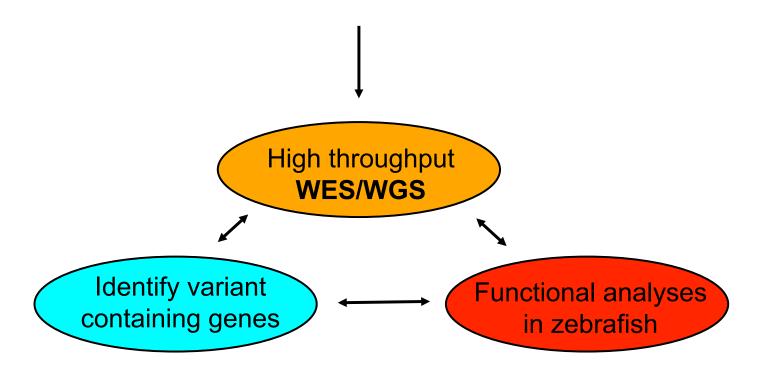
Rapid Identification and Validation of Human Craniofacial Development Genes


FaceBase 2015 Annual Meeting USC Information Sciences Institute Los Angeles, CA January 8-10, 2015

Richard Maas, M.D., Ph.D. Division of Genetics Brigham and Women's Hospital Harvard Medical School Eric Liao, M.D., Ph.D. Department of Surgery Massachusetts General Hospital Harvard Medical School Fowzan Alkuraya, M.D. Department of Genetics King Faisal Hospital & Research Center Riyadh, Saudi Arabia

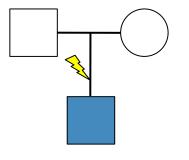
Discovering Human Birth Defect Genes

Identify genes in patients with craniofacial developmental defects and bioinformatically tractable monogenic inheritance

Rapid Craniofacial Gene Discovery: Specific Aims

- 1. Ascertain and recruit patients with a wide range of craniofacial dysmorphoses of likely monogenic etiology.
- 2. Rapid identification of genes regulating human craniofacial development (WES, WGS and seq. analysis).
- 3. Rapid expression and functional analysis of human candidate genes (zebrafish > mouse).

Case ascertainment

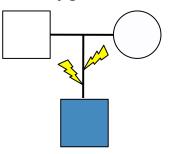

- Goal of discovering new gene functions
 Reported rare phenotypes with unknown genetic etiology
 Rare unreported genetic phenotypes
- 2. High confidence of solving the case Assume complete penetrance of a monogenic disease Sufficient individuals to solve this case
- 3. Variant interpretation

Limit analysis to protein coding mutations, splice site mutations, and structural variants (~70-100 per individual)

Assign: 1 Clinician, 1 Bioinformatician, 1 Biologist per case

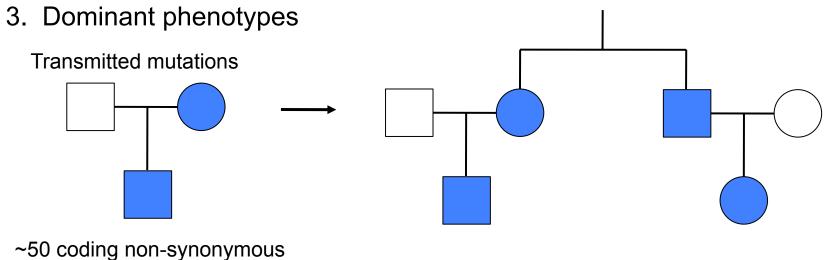
Three (3) bioinformatically solvable genetic paradigms

- 1. Dominant phenotypes
 - *De novo* mutations


0-3 coding non-synonymous mutations per individual

Assumptions

- Monogenic inheritance
- Complete penetrance
- Limit the first order analysis to protein coding mutations, splice site mutations and structural variants


2. Recessive phenotypes

Rare compound heterozygote and homozygote mutations

3-5 compound heterozygote and 1-2 homozygote mutations per individual

Three (3) genetic paradigms, continued ...

variants transmitted

A chance to solve the case on statistical grounds!

Strategy

Filter number of candidate SNVs down to a manageable number (*e.g.*, <10), then use an integrated, interdisciplinary approach.

Exceptions and Complications

Missing family members, X-linked and mitochondrial disorders, digenic and complex inheritance, incomplete penetrance, non-exonic mutations, *etc.*

Aim 1: Ascertain and recruit patients w/ a wide range of craniofacial dysmorphoses of likely monogenic etiology.

- Craniofacial and genetics clinics at Boston Children's Hospital (BCH), King Faisal Specialist Hospital & Research Center (KFSHRC), Riyadh
- Other collaborators, both national and international, including you! = FaceBase 2 colleagues
- FaceBase Biorepository samples (J. Murray *et al.,* U. Iowa)
- NIH Undiagnosed Disease Network (UDN, 7 clinical centers)

Craniofacial defect cases solved:

BWH, MGH and KFSHRC experience as of FB2 Kick-Off Meeting

Gene	Disorder	Phenotype	Proof	Institution
SUMO1	CL/P	CL/P (low penetrance)	Mouse	BWH
SPECC1L	ObFC	Oblique Facial Clefting, Tessier IV	Human, Fish, Fly	BWH, MGH
CAPZB	Pierre Robin syndrome	CP, Macrglossia, Micrognathia, Hypotonia	Human, Mouse, Fish	MGH, BWH
ZEB2	Mowat Wilson syndrome	Mandibular prognathism, type III malocclusion	Human, Mouse	Others, BWH
ATG4C	СР	СР	Fish	MGH
PIEZO2	DA5, GS, MWS	Arthrogryposis, characteristic facies, CL/P	Human, Fish, Fly	BWH, MGH
COG6	Novel syndrome	Anhidrosis, intellectual disability, craniofacial dysmorphism	Human	KFSHRC
TMEM231, C5orf42, EXO, C4, TCTN2	Meckel-Gruber syndrome	Skull defect, PCKD, polydactyly	Human	KFSHRC
EOGT, DOCK6	Adams-Oliver synd.	Cutis aplasia (scalp), limb reduct.	Human	KFSHRC
MEOX1	Klippel-Feil synd.	Segmentation defect cervical vert.	Human	KFSHRC
LARP7	Malpuech syndrome	Craniofacial dysmorphism, CP	Human	KFSHRC
C2orf37	Woodhouse-Sakati syndrome	Craniofacial dysmorphism, alopecia, hypogonadism	Human	KFSHRC
CENPJ	Seckel syndrome	Craniofacial dysmorphism, primordial dwarfism	Human	KFSHRC
FREM1	BNAR	Bifid nose, renal anomalies	Human	KFSHRC

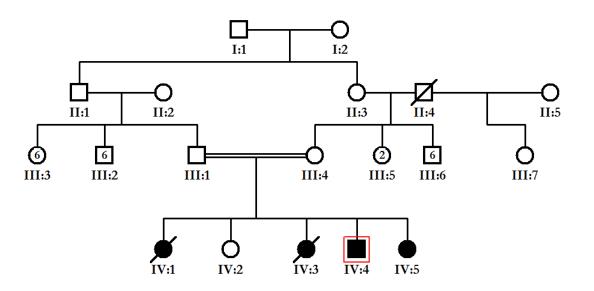
Five new cases since kickoff meeting (Fowzan Alkuraya and colleagues, KFSHRC)

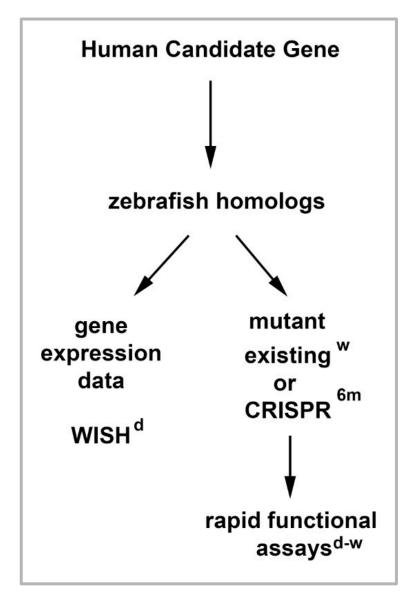
KF1 is a DNA damage repair gene with homozygous truncation in a patient **with primary microcephaly, Seckel facies** (but no dwarfism) and oligodactyly. He has cancer predisposition and was treated with chemotherapy for HCC.

KF2 is a gene with homozygous truncation in a patient with bizarre **craniofacial dysmorphism, large ears** and profound postnatal growth retardation.

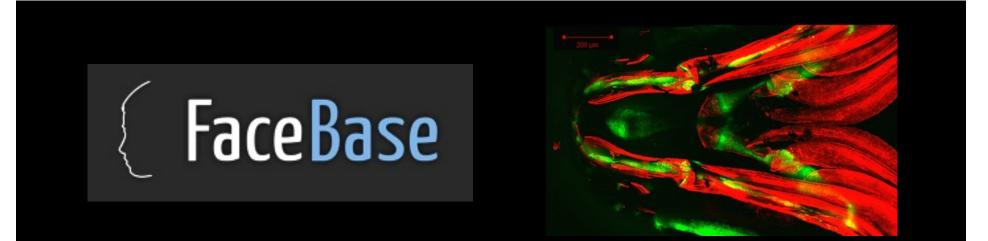
KF3 is a gene with homozygous truncation in a family with a novel syndrome including **massive congenital hydrocephalus** and Hirschsprung disease.

KF4 in a case with **facial dysmorphism** and skeletal dysplasia.



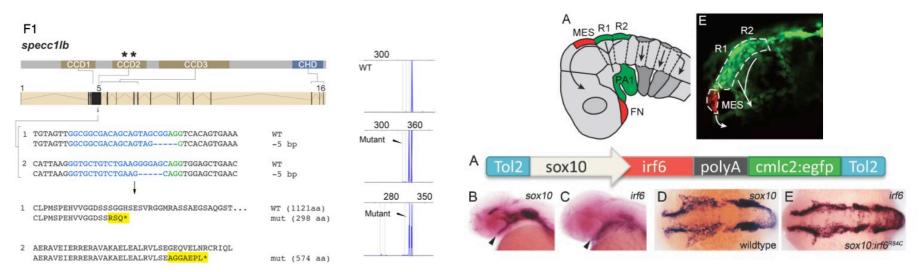

MYBPC2 novel gene with a missense mutation for **Frank ter Haar syndrome.** Only other known gene for this condition is *SH3PXD2B* but there is acknowledged genetic heterogeneity.

Frank ter Haar syndrome (Dermato-cardio-skeletal syndrome)


- Brachycephaly
- Wide fontanelles
- Prominent forehead
- Hypertelorism
- Flexion contractures
- Congenital glaucoma

- Functional evidence for causality
 - Phenocopy clinical presentation
- Rapid gene editing
 - mutagenesis
 - knock-in

- Mechanism
- Identify new pathways


Welcome to FishFace: An Atlas of zebrafish craniofacial development

Eames, B.F. Huycke, T.	Kimmel, C.B. McFadden, M.	Nichols, J.T. Sasaki, M.M.	Ullmann, B. Walker, C.
		μ 100 μm	B
	-20 C		

Efficient gene editing

Targeted mutagenesis

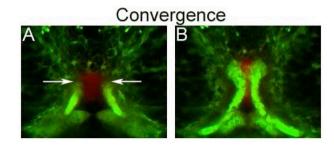
Transgenesis

Homologous recombination / Knock-in

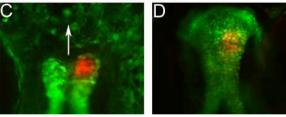
Mutagenesis projects

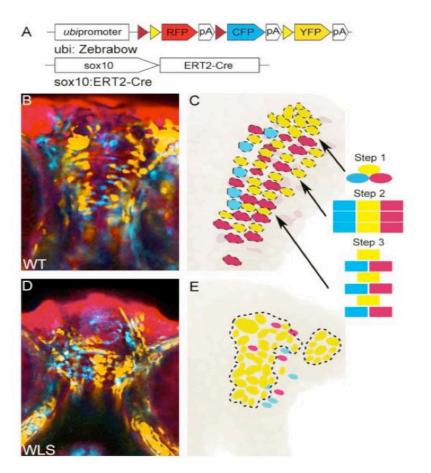
Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system

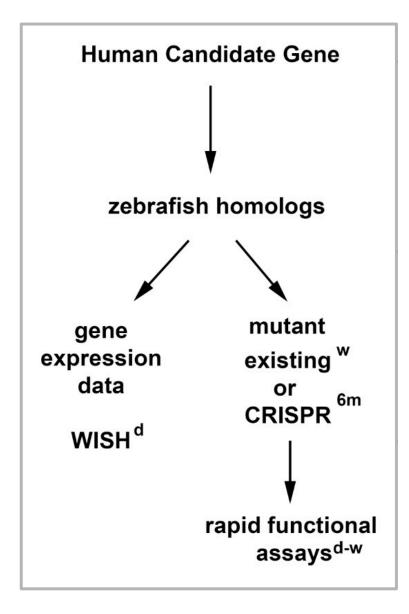
Retroviral Tg ENU


Uwe Irion*, Jana Krauss and Christiane Nüsslein-Volhard

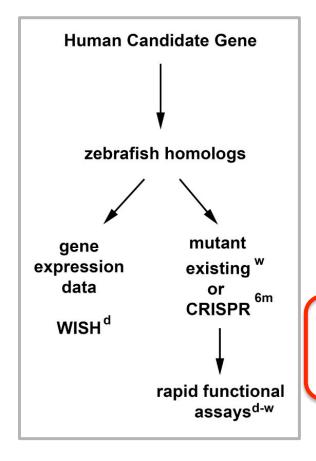
Rapid and detailed phenotype assays


Rapid gene expression analysis Expression database




In vivo visualization of cranial neural crest

Functional evidence for causality


- new models of ObFC
- CLP / CP
- micrognathia

Rapid gene disruption

- SPECC1L
- CAPZB
- ATG4C

Identify new pathways

- cytoskeleton / wave complex
- autophagy

KF1 is a DNA damage repair gene with homozygous truncation in a patient with primary microcephaly, Seckel facies (but no dwarfism) and oligodactyly. He has cancer predisposition and was treated with chemotherapy for HCC.

KF2 is a gene with homozygous truncation in a patient with bizarre **craniofacial dysmorphism**, large ears and profound postnatal growth retardation.

KF3 is a gene with homozygous truncation in a family with a novel syndrome including **massive congenital hydrocephalus** and <u>Hirschsprung</u> disease.

KF4 in a case with facial dysmorphism and skeletal dysplasia.

MYBPC2 novel gene with a missense mutation for **Frank ter Haar syndrome.** Only other known gene for this condition is *SH3PXD2B* but there is acknowledged genetic heterogeneity.

Candidate gene: *MYBPC2* Zebrafish homologs: *mybpc2a*, *mybpc2b*

Rapid gene expression analysis

Wealth of existing mutants

Gene editing

Rapid phenotype assays

Dermato-cardio-skeletal (Frank ter Haar) Cleft palate Skeletal dysmorphism myosin binding protein C

mybpc2b

Candidate gene: *MYBPC2* Zebrafish homologs: *mybpc2a*, *mybpc2b* Dermato-cardio-skeletal (Frank ter Haar) Cleft palate Skeletal dysmorphism myosin binding protein C

Rapid gene expression analysis

Woalth of aviating mutanta

mybpc2b

veallino			
	Genomic Feature: Synonyms: Affected Genes:	la024094Tg la024094 (2)	
	Construct:	mybpc2a (1) Tg(nLacz-GTvirus) (1)	
Rapid ph	Type: Protocol:	Transgenic Insertion (2) embryos treated with DNA	
	Lab Of Origin: Location:	Burgess & Lin Lab Unmapped	
	Sequence: Current Sources:	GenBank: JS885776 (2) Zebrafish International Resource Center (ZIRC)	

Candidate gene: *MYBPC2* Zebrafish homologs: *mybpc2a*, *mybpc2b*

Rapid gene expression analysis

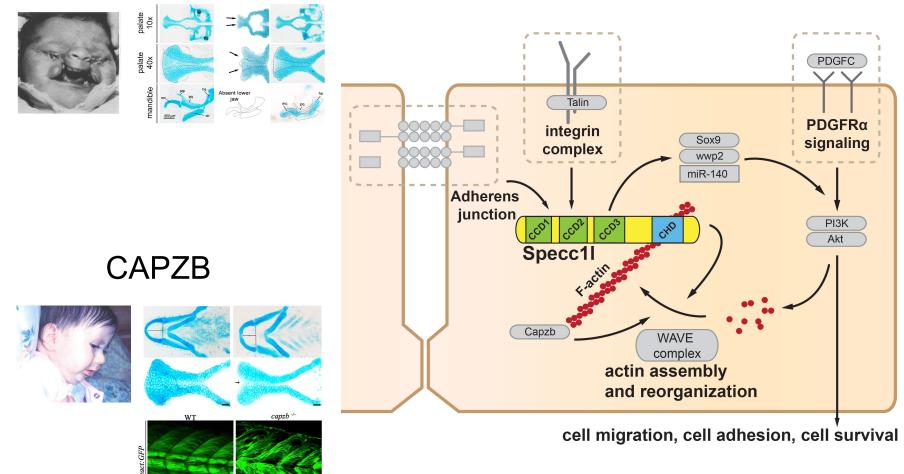
Wealth of existing mutants

Gene editing

Rapid phenotype assays

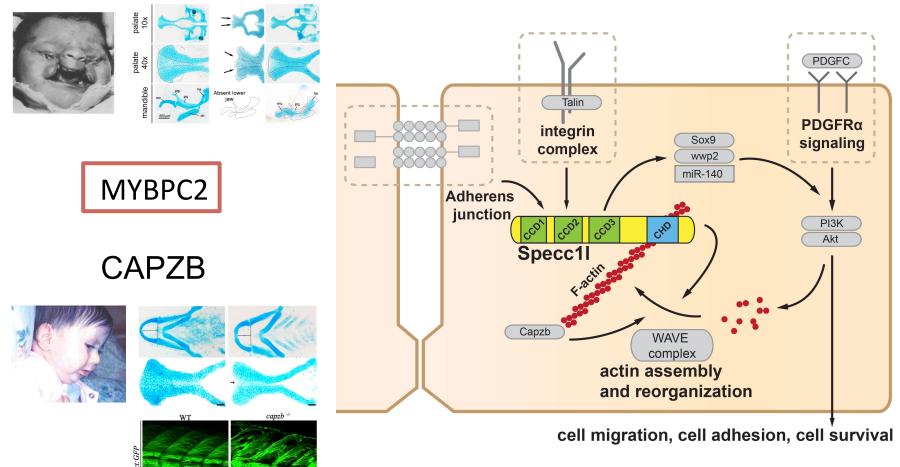
(Frank ter Haar) Cleft palate Skeletal dysmorphism myosin binding protein C

Dermato-cardio-skeletal

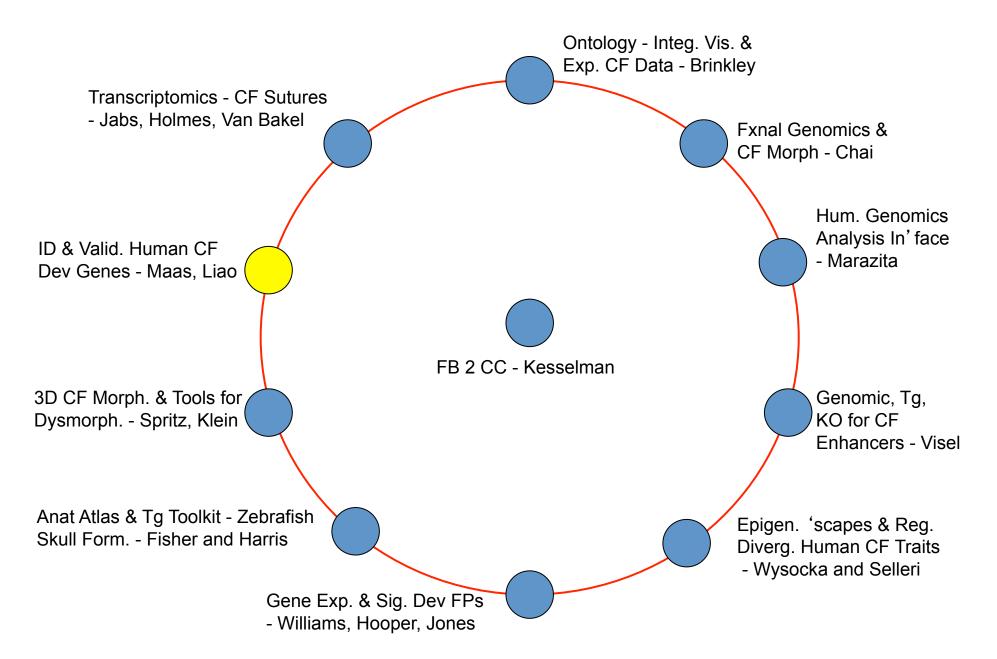

mybpc2b

mybpc2a: la024094Tg

CRISPR mybpc2b


Functional Genomics ------ Pathways

SPECC1L



Functional Genomics ------ Pathways

SPECC1L

Potential Interactions with Other Spoke Projects

Acknowledgements

Brigham and Women's Hosp. (Maas and Sunyaev Laboratories

Shamil Sunyaev, PhD Dana Vuzman, PhD Soumya Raychaudhuri, MD, PhD Peter Park, PhD Hichem Miraoui, PhD

Boston Children's Hosp.

Joan Stoler MD Catherine Nowak, MD

Massachusetts General Hosp. (Liao Laboratory)

Kana Ishii, PhD Irving Ling, MD Edward Li Kushi Mukherjee, PhD Lucie Rochard, PhD

King Faisal Hosp. & Research Ctr.

Fowzan Alkurarya, MD Ranad Shaheen, MD Fatma Alzahrani, MD Nisha Patel, MD

NIDCR Facebase - 2 U01DE024443 And NIDCR Program Staff *Plus many other colleagues!*

