Genomic and Transgenic Resources for Craniofacial Enhancer Studies May 2016 Update

e15.5

FaceBase Axel Visel

Sr. Staff Scientist

Genomics Division Lawrence Berkeley National Laboratory

Associate Adjunct Professor School of Natural Sciences University of California, Merced

Posters: Iros Ba

Iros Barozzi Cailyn Spurrell

Outline

BACKGROUND

Data Generation Progress

- Chromatin and RNA-seq data from mouse face regions
- Chromatin and RNA-seq data from human craniofacial tissue
- Transgenic enhancer validation/characterization
- OPT

Analysis, Interactions and Collaborations

Integrative analysis of human and mouse chromatin data Human-specific craniofacial enhancers (Wysocka) Grhl2 enhancers (Dworkin)

Distant-acting enhancers dictate tissue-specific gene expression

.....

BERKELEY LA

Enhancer mapping by tissue-ChIP-seq

Transgenic Characterization

3 of ~200 craniofacial enhancers

OPT imaging (enhancer:background)

OPT imaging: David FitzPatrick/Harris Morrison, Edinburgh

400 µm

mCF90 First BA (Max and Mand)

400 µm

Mn1

mCF208* Facial Mesenchyme

FACEBASE 2: Specific Aims

Aim 1: Genome-wide enhancer Activity Mapping via ChIP-seq of Craniofacial Tissues

- Critical developmental windows
 - MOUSE maxillary, mandibular, medial/lateral nasal processes at e11.5, e13.5, and e15.5
 - HUMAN at cs18 and cs22
- ChIP-seq: histone modifications for promoters, enhancers, and repressed chromatin
- rRNA-depleted total RNA: mRNA and most non-coding RNA species
- ATAC-seq: assay for open chromatin new

FACEBASE 2: Specific Aims

Aim 1: Progress Mouse Tissues

Mouse Tissues

Stage	Tissue	RNA-seq	H3K4me1	H3K27ac	H3K27me3	
E11.5	Mandibular process	V	V	V	V	
	Maxillary process	V	V	V	V	
	Lateral nasal prominence	V	V	V	V	1
	Medial nasal prominence	V	V	V	v	

Stage	Tissue	RNA-seq	H3K4me1	H3K27ac	H3K27me3
E13.5	Mandibular process	V	V	٧	V
	Maxillary process	v	V	v	V
	Nose	v	V	v	V

 $\sqrt{2}$ RNA-Seq or ChIP-Seq finished including QC and primary data analysis

Improved ChIP-seq protocols

BERKELEY LAD BERKELEY NATIONAL LABORATORY

FACEBASE 2: Specific Aims

Aim 2: Transgenic Assays of Candidate Enhancer Sequences

- Candidate sequences:
 - Scanning loci of interest for enhancers (developmental biology, human genetics)
 - Testing predictions of region-specific enhancer activity
- 26 transgenic experiments in 2015
- 62% positive for craniofacial structures

As in FaceBase 1: We make this capability available to other FaceBase investigators and are looking forward to collaborate!

FACEBASE 2: Specific Aims

Aim 2: Optical projection tomography data (OPT)

- 43 available in FaceBase Hub
- 49 more generated (David FitzPatrick Lab)

Analysis, Interactions and Collaborations

Systematic identification of enhancers with sub-regional activity patterns

Integrative analysis of chromatin and RNA-seq data

Candidate regions currently being tested in transgenics

Human-Specific Craniofacial Enhancers

(collaboration with Wysocka group)

Conservation of peaks across species

.....

n = 1,360 of which 588 in 4/4 224 in 3/4 242 in 2/4 306 in 1/4 Using tissue-ChIP-seq data to support identification of human-specific craniofacial enhancers

ERNEST ORLANDO LAWRENGE

Preliminary results

×.

JW6 element

Reproducibility: 6/7

Chimp

In progress

Collaborative Testing of Enhancers

(example: Seb Dworkin, Monash University)

Using histone data to scan loci of interest for enhancers

Example: Screening for enhancers near *Grhl*2 With Sebastian Dworkin, Monash U.

Tested element **mSD4** In vivo LacZ pattern Reproducibility: 6/7

RNEST ORLANDO LAWRENCE

- Highly reproducible ectodermal enhancer (consistent with *Grhl2* expression)
- Remarkably similar to an enhancer of IRF6 we found earlier with Brian Schutte

Ectodermal enhancer of Grhl2

FaceBase Investigators and beyond: Please approach us with requests and suggestions for transgenic testing!

Project Team

Lawrence Berkeley National Lab

Experimental postdocs: Cailyn Spurrell, Marco Osterwalder, Evgeny Kvon Computational postdocs: Yoko Yuzawa (data liaison), Iros Barozzi Other Senior Staff: Diane Dickel, Len Pennacchio Molecular Biology and Mouse Transgenics: Jennifer Akiyama, Veena Afzal, Brandon Mannion, Cathy Pickle, Ingrid Plaijzer-Frick, Momoe Kato, Tyler Garvin, Elizabeth Lee

MRC Human Genetics, Edinburgh, UK - Optical projection tomography David FitzPatrick, Harris Morrison

HDBR, Newcastle, UK Steven Lisgo

University of Calgary, Canada - *Morphometry* Benedikt Hallgrimsson, Denise Liberton

University of Southern California – KO analysis Yang Chai

Major Spoke Collaborator: Wysocka Lab

