RNA dynamics in the developing mouse face

University of Colorado Anschutz Medical Campus Hong Li, Phil O'Neill, Joan Hooper, Ken Jones, Trevor Williams

Aim 1. Describe the transcriptional dynamics of mouse facial development.

What are the genes and gene regulatory networks that enable the various prominences to give rise to different derivatives?

Aim 2. Experimental and bioinformatics analysis of differential splicing.

Loss of epithelial-specific splicing factors causes drastic changes in face formation (R. Carstens) – what isoform differences distinguish the various tissues and prominences over time?

Aim 3. Describe the post-transcriptional RNA dynamics of mouse facial development.

Not today!

Normal Craniofacial Development

(mouse)

FNP = Frontonasal

MxP = Maxillary

Man = Mandibular

Matt Kaufman

Tissue Interactions During Face Formation

Neural crest

Neural Crest and Mesoderm form the Mesenchymal cell populations that are the building blocks of the face – they will form e.g. skeleton and muscles.

Surrounding tissues, especially ectoderm, provide critical signals for growth, patterning and morphogenesis, as well as contributing to teeth, glands, eyes and hair.

Ectoderm

Facial defects arising when AP-2 transcription factors are deleted in the neural crest

CONTROL

Neural-crest KO

Eric Van Otterloo

Facial defects arising when AP-2 transcription factors are deleted in the ectoderm

CONTROL

Ectoderm KO

Eric Van Otterloo

APPROACH

E10.5

Intact

Ectoderm

RNA

e.g. mRNA For RNAseq

APPROACH

E10.5

Intact

Ectoderm

RNA

e.g. mRNA For RNAseq

Aim 1. Mouse RNA-Seq Datasets are complete.

Principal component analysis indicates replicates are tight.
Samples separate mainly by tissue layer and time, and to a lesser extent prominence.
Data are suitable for in depth analysis (Aim 2, Joan Hooper)

Aim 1. miRNAs and other small RNAs

- Critical regulators of face formation, but not poly-adenylated.
- Analyze by sequencing or microarray?
- We decided on microarray for a combination of technical reasons, including the ability to detect a broader range of RNA classes, as well as reproducibility.

Dicer plus Dicer minus

miRNAs and other small RNAs

In association with Affymetrix, we designed a custom mouse small RNA array

Category	Sequences	Probes per probe set	Probe count	
miRNA mature from miRBase release 21	1,915	9	17,235	
miRNA hairpins from miRNA 4.0	1,174	11	13,768	
miRNA hairpins new in miRBase release 21	8	11	88	
miRNA hairpins recovery of poor sequences	11*	Varies	89	
tRNAs from gtRNAdb	471	11	5,457	
Additional Mt tRNAs/controls from NCBI	4	11	44	
MTA TCs for small RNAs**	3,383	Varies	125,077	
MTA junctions for small RNAs**	2,670	4	10,657	
Enhancer RNAs forward direction	3,943	Every 100 bases	77,805	
Enhancer RNAs reverse direction	3,943	Every 100 bases	77,845	
Total			328,065	

Total capacity of 100/9 format array at 6-micron features is 365k probes

We also worked with Dr. Visel's group to add eRNAs to the array for a pilot studies on whether these enhancer associated transcripts can be detected and characterized using this technological approach.

^{*12} sequences total, 1 sequence had no valid probes

^{**}Non-Mt tRNA content removed from MTATCs and junctions

Preliminary data: miRNAs and other small RNAs

- ❖ We used biological triplicate samples from E16.5 secondary palate ectoderm for a test run.
- ❖ We can detect strong signal from: miRNAs, tRNAs, snoRNAs, snRNAs, 5S RNA.
- Data from biological triplicates are reproducible.
- ❖ Preliminary analysis indicates we can detect many miRNAs known to be expressed in skin and palate, e.g. mir-203, mir-200c, mir-205.
- Analysis of equivalent tissue from Dicer KO embryos show significant and specific loss of miRNA signals.

PLANS: Troubleshoot eRNA signal.

Utilize arrays for the samples:

TIME

TISSUE

PROMINENCE

Aim 2: Differential Isoform Analysis...

Initial analysis of isoforms with differential expression.

These examples represent differences for ectoderm vs mesenchyme shown using IGV browser screenshots.

Ecto x 3

Mes x3

Differential promoter usage

S100a16

These represent functionally significant examples.

Reproducible dataready for in depth bioinformatic analysis.

Differential splicing

Preliminary Differential Isoform Conclusions

- ❖ Most differential isoform usage occurs between the different tissue layers.
- Many of the corresponding genes are associated with EMT in other biological contexts.
- There are few isoform differences between the common transcripts expressed in the three facial prominences.
- ❖ A few genes show alterations in exon usage over time in a specific tissue.
- Such "time" genes often show "sloppy" splicing of particular exons over time with more retained intron sequences.
- ❖ PLANS: Additional bioinformatic and experimental analysis planned to characterize and validate these isoform differences using transcriptome arrays, RT-PCR etc.

beyond the gene lists...

... systems biology of facial development

Ectoderm-mesenchyme differences dominate

Dissecting the ectodermal program:

1218 genes enriched in ectoderm: 1461 genes enriched in mesenchyme (fc > 2; p.adj < 0.01)

pan-Ectoderm gene functions

Gene ontology term (gene count)	Enrichment	P.adjust	Gene ontology term (gene count)	Enrichment	P.adjust
epithelial morphogenesis & development (104)			adhesion & motility (98)		
epithelium development (36)	3.3	7.04E-07	cell adhesion (65)	2.9	5.98E-11
tissue morphogenesis (32)	3.3	2.66E-06	cell-cell adhesion (32)	3.4	3.25E-06
tube development (32)	3.0	2.30E-05	regulation of cell adhesion (14)	3.7	5.66E-03
gland development (26)	3.3	7.69E-05	calcium-independent cell-cell adhesion (7)	7.6	1.09E-02
morphogenesis of a branching structure (19)	3.8	3.26E-04	homophilic cell adhesion (15)	3.2	1.15E-02
cell morphogenesis (32)	2.6	3.26E-04	cell motion (32)	2.2	5.17E-03
regulation of cell morphogenesis (16)	4.1	7.43E-04	cell migration (22)	2.3	2.34E-02
epithelial cell differentiation (18)	3.6	8.40E-04	extracellular structure organization (16)	2.7	2.81E-02
morphogenesis of a polarized epithelium (6)	13.5	2.89E-03	signaling (151)		
epidermis development (17)	3.4	2.88E-03	intracellular signaling cascade (72)	2.0	1.71E-05
cell morphogenesis involved in differentiation (21) 2.5	1.57E-02	regulation of kinase activity (21)	2.7	5.75E-03
regulation of morphogenesis of a branching			enzyme linked receptor protein signaling		
structure (7)	7.0	1.61E-02	pathway (26)	2.4	6.25E-03
keratinocyte proliferation (5)	12.4	1.87E-02	cell-cell signaling (27)	2.3	6.32E-03
morphogenesis of embryonic epithelium (11)	3.5	3.07E-02	regulation of Ras protein signal transduction		
odontogenesis (12)	6.6	1.86E-04	(19)	2.6	1.59E-02
hair follicle development (10)	5.0	7.60E-03	negative regulation of signal transduction (18	3) 2.6	2.02E-02
neural development (66)			establishment of planar polarity (4)	19.9	2.17E-02
regulation of nervous system development (21)	3.5	2.68E-04	regulation of phosphorylation (25)	2.1	2.30E-02
neuron differentiation (36)	2.2	1.20E-03	transmembrane receptor protein tyrosine		
cell projection organization (28)	2.2	1.05E-02	kinase signaling pathway (19)	2.5	2.40E-02
sensory organ development (24)	2.3	1.28E-02	positive regulation of catalytic activity (23)	2.2	2.64E-02
other development (77)			Wnt receptor signaling pathway, calcium		
mesoderm development (10)	4.2	2.00E-02	modulating pathway (6)	7.5	2.84E-02
embryonic morphogenesis (29)	2.0	2.22E-02	protein amino acid phosphorylation (43)	1.7	3.27E-02
embryonic organ development (21)	2.2	4.41E-02	negative regulation of cell communication (1)	8) 2.4	3.55E-02
cell fate commitment (16)	2.7	2.62E-02	Wnt receptor signaling pathway (14)	2.7	5.04E-02
negative regulation of cell development (8)	5.0	2.85E-02	regulation of growth & proliferation (70)		
positive regulation of developmental process (2	.0) 2.3	2.95E-02	regulation of cell proliferation (48)	2.2	8.08E-05
vasculature development (22)	2.2	3.22E-02	negative regulation of cell differentiation (22)	3.0	1.25E-03
other (76)			regulation of developmental growth (8)	5.4	2.13E-02
sulfur metabolic process (12)	3.2	3.56E-02	regulation of cell growth (12)	3.2	3.13E-02
phosphate metabolic process (54)	1.5	3.72E-02			

547 of 859 pan-Ectodermal genes were associated with Biological Process GO terms. 310 were associated with enriched terms. Fold enrichment and P.adjust (P-value, with Benjamini adjustment for multiple testing) were determined using DAVID analysis. All enriched terms (p.adjust < 0.05) are reported here, after grouping by genes and eliminating redundant terms.

Dissecting the ectodermal program:

1218 genes enriched in ectoderm: 1461 genes enriched in mesenchyme (fc > 2; p.adj < 0.01)

the early ectoderm program

co-expression = shared function

Co-expression modules & clefting

Maxilla clefting modules

Module eigengene expression Mx mes, etc.

GO BP annotation

granulocyte differentiation

Network connections

Co-expression in GEO

Maxilla clefting modules

Module eigengene expression Mx & Md mes GO BP annotation forebrain neuron differentiation odontogenesis Network connections Tissue co-localization Predicted interaction Physical interaction Shared phenotype

Maxilla clefting modules

Module eigengene expression

E11.5 mes & ect; Mx, etc.

GO BP annotation

- heart morphogenesis
- B cell apoptotic process
- lymphocyte differentiation
- response to amino acid stimulus

Network connections

Co-expression in GEO

Predicted interaction

co-expression modules?

- probably useful to address
 - what groups of genes are in a particular time/ place/tissue?
 - what are the 'funtions' that these groups pinpoint?
 - I've got an 'unknown' or poorly annotated gene.
 What does it do?

QUESTIONS?