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Our aims:

AIM1: To characterize epigenetic landscapes and
transcriptomes of human and chimpanzee
Cranial Neural Crest Cells (CNCCs) and to identify

conserved and species-specific cis-regulatory
elements

AIM2. To analyze activity of candidate human-
specific craniofacial enhancers in vivo.



Challenge: how do regulatory
elements encode human traits?
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Studying evolution of closely related
species is a powerful tool for uncovering

genotype-phenotype connections
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‘Cellular anthropology’:
Using higher primate cellular models to
study enhancer landscape evolution
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Most of our face and head is derived
from the cranial neural crest

cartilage
connective tissue “«_.

e cranial nerves s P
* pigmentation Image: P. Trainor lab, Stowers Institute




Cranial neural crest derived structures played
a key role in human evolution




How can we access cranial neural crest

cells from higher primates?
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An in vitro model of human cranial neural

crest cell formation

In vivo
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In vitro derived human CNCC exhibit transcriptional
and cellular characteristics of the NC in vivo

In vivo In vitro
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Establishment of the chimpanzee cranial
neural crest model
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Epigenomic strategy for systematic annotation of
primate cranial neural crest enhancers

Human and Chimpanzee

: m: Cranial Neural Crest Cells

ChlIP-seq, ATAC-seq, RNA-seq

transposase

N S TR Y Y

TFs and general ATAC H3K4mel H3K27ac H3K4me3
coactivators (hypersensitivity) l

p300, hypersensitivity

H3K27ac
HBK4mel
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Epigenomically mapped human CNCC enhancers
drive craniofacial gene expression in vivo
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Can we use epigenomics to experimentally
map regulatory divergence in human and
chimp neural crest cells?

structural variation  quantitative change at

(no clear orthology) orthologous regions Cha nges in gene
expression?

“Invariant” “Species-biased”
enhancers enhancers



Discovery of species-biased enhancers
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Quantitative epigenomic comparisons at
orthologous regions identify species-biased
enhancers genome-wide
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Can changes in specific transcription factor
motifs explain epigenomic divergence?
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Using interspecies genetic diversity like a large-scale enhancer mutagenesis screen



Can changes in specific transcription factor
motifs explain epigenomic divergence?
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Surprise: A singular outlier motif strongly
predictive of permissive chromatin states
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‘Coordinator’ — long novel motif



Surprise: A singular outlier motif strongly
predictive of permissive chromatin states

‘Coordinator’ :

Highly predictive of binding of other TFs

Enriched at CNCC-selective enhancers as compared to pleiotropic enhancers,
and at species-biased enhancers compared to invariant ones

Sufficient to drive expression in reporter assays in CNCCs

motif PWMs

‘Coordinator’ — long novel motif



Does the Coordinator motif license enhancer
activity in the primate neural crest?

‘Coordinator’ :

* Highly predictive of binding of other TFs

* Enriched at CNCC-selective enhancers as compared to pleiotropic enhancers,
and at species-biased enhancers compared to invariant ones

e Sufficient to drive expression in reporter assays in CNCCs

motif PWMs
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Does the Coordinator motif function in the primate neural i
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binds a pioneer factor Zelda? £ . ataaxVIGAlY.
(Ch. Rushlow, M. Eisen and others)

‘Coordinator’ — long novel motif



Analysis of changes in Coordinator motif
relative to ancestral states

Changes in Coordinator
relative to ancestral state




Analysis of changes in Coordinator motif
relative to ancestral states reveals equal
contribution of gains and losses

Changes in Coordinator Coordinator motif changes Coordinator motif changes
relative to ancestral state at human-biased enhancers at chimp-biased enhancers

Ancestral Ancestral Ancestral

loss in both

A-log,p of fit to consensus A-log,p of fit to consensus




Most changes in Coordinator motif occurred
prior to split of humans from other
hominins, but some appear human-specific

= human skull
3

Neanderthal skull

Coordinator motif changes (to scale)
at human-biased enhancers




An example of human-biased enhancer with
human-specific gains of the Coordinator motif
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Species biased enhancers show divergent activity
in head structures in vivo
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Species biased enhancers show divergent activity
in head structures in vivo
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Species-biased enhancers are associated
with genes showing species-biased
expression in the neural crest

Association with divergent gene expression (RNA-seq)
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Ontology annotation of species-biased enhancers reveals
associations with genes involved in development and
malformation of various craniofacial structures

Human-Biased Enhancers

Head develogment
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Neural crest formation
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Abnormal neurocranium morphology
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Examples of species-biased genes with dosage-
dependent effects on facial morphology

Chimp biased in expression
and enhancer landscapes:

PAX3

* haploinsufficiency in humans g
associated with reduced jaw
size and pigmentation,
depressed nasal bridg '

(Waardenburg synfrome) .

EDNRA

* heterozygous mutations in . /

|
Gordon et al., 2015



Examples of species-biased genes with dosage-
dependent effects on facial morphology

Human biased in expression
and enhancer landscapes:

BMP4
* variation of beak morphology in
Darwin’s finches

BMP4 levels in CNCC

elevated expression of BMP4
in the mouse CNCC results in
jaw size reduction and
rounding of the skull shape

control BMP4 OE
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éonilla- lauélio etal., 2012




Species-biased enhancers are not distributed
evenly across chromosomes

Quantitative measure of enhancer bias across chromosome 11



About 10% of species-biased enhancers fall
within clusters of high regulatory divergence
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Clusters of high regulatory divergence can
be identified across the whole genome

Distribution of Divergence Scores at Distribution of Divergence Scores at
Human-Biased Enhancers Chimp-Biased Enhancers
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Clusters of high regulatory divergence overlap
loci implicated in normal-range human facial
variation in GWAS studies
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Summary

In Vitro Differentiation

cranial neural
crest cells

Comparative Epigenomics Validation
l_, mouse E11.5 face
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Invariant Divergent Associated
craniofacial  craniofacial changes in. human chimp
enhancer enhancer gene expression enhancer enhancer

Sequence analysis Genomic features of Resource for
of causitive mutations species-biased morphological studies
enhancers

IA H3K27ac

Coordinator motif

vl

human AAATGAAAAACACATGT
chimp AAATGAAAAATACATGT




FaceBase deliverables

In Vitro Differentiation
n vitro
— dlfferentlatlon
=

iPSCs cranial neural
crest cells

Comparative Epigenomics Validation
mouse E11.5 face

re—raly |

Invariant Divergent Associated
craniofacial  craniofacial changes in human chimp
enhancer enhancer gene expression enhancer enhancer

* ChlP-seq: Histone modifications (H3K27ac, 5 constructs completed; more in
H3K4mel, H3K4me3, H3K27me3), coactivator progress for 2016/2017
(p300), transcription factors (NR2F1, TFAP2A)

* chromatin accessibility (ATACseq) Collaboration with the A. Visel spoke

* gene expression (RNAseq)

Functional manipulation?
three different human lines and two chimp lines;

many datasets in replicates to increase robustness



